Rev at SemEval-2016 Task 2: Aligning Chunks by Lexical, Part of Speech and Semantic Equivalence
نویسندگان
چکیده
We present the description of our submission to SemEval-2016 Task 2, for the sub-task of aligning pre-annotated chunks between sentence pairs and providing similarity and relatedness labels for the alignment. The objective of the task is to provide interpretable semantic textual similarity assessments by adding an explanatory layer to aligned chunks. We analysed the provided datasets, considering lexical overlap, the part of speech tags and the synonyms of the words in the chunks, and developed a rule-based system reflecting that analysis. Our system performance indicates that when sentence pairs are similar, alignment of chunks can be performed fairly well using lexical information alone without syntactic or semantic analysis. The advantage of our system is that we can easily trace when chunks are aligned.
منابع مشابه
SemAligner: A Method and Tool for Aligning Chunks with Semantic Relation Types and Semantic Similarity Scores
This paper introduces a ruled-based method and software tool, called SemAligner, for aligning chunks across texts in a given pair of short English texts. The tool, based on the top performing method at the Interpretable Short Text Similarity shared task at SemEval 2015, where it was used with human annotated (gold) chunks, can now additionally process plain text-pairs using two powerful chunker...
متن کاملInspire at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity Alignment based on Answer Set Programming
In this paper we present our system developed for the SemEval 2016 Task 2 Interpretable Semantic Textual Similarity along with the results obtained for our submitted runs. Our system participated in the subtasks predicting chunk similarity alignments for gold chunks as well as for predicted chunks. The Inspire system extends the basic ideas from last years participant NeRoSim, however we realiz...
متن کاملDTSim at SemEval-2016 Task 2: Interpreting Similarity of Texts Based on Automated Chunking, Chunk Alignment and Semantic Relation Prediction
In this paper we describe our system (DTSim) submitted at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity (iSTS). We participated in both gold chunks category (texts chunked by human experts and provided by the task organizers) and system chunks category (participants had to automatically chunk the input texts). We developed a Conditional Random Fields based chunker and applied r...
متن کاملUWB at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity with Distributional Semantics for Chunks
We introduce a system focused on solving SemEval 2016 Task 2 – Interpretable Semantic Textual Similarity. The system explores machine learning and rule-based approaches to the task. We focus on machine learning and experiment with a wide variety of machine learning algorithms as well as with several types of features. The core of our system consists in exploiting distributional semantics to com...
متن کاملUWB at SemEval-2016 Task 1: Semantic Textual Similarity using Lexical, Syntactic, and Semantic Information
We present our UWB system for Semantic Textual Similarity (STS) task at SemEval 2016. Given two sentences, the system estimates the degree of their semantic similarity. We use state-of-the-art algorithms for the meaning representation and combine them with the best performing approaches to STS from previous years. These methods benefit from various sources of information, such as lexical, synta...
متن کامل